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Variance of transmitted power in multichannel dissipative ergodic structures invariant
under time reversal
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We use random matrix theory~RMT! to study the first two moments of the wave power transmitted in
time-reversal invariant systems having ergodic motion. Dissipation is modeled by a number of loss channels of
variable coupling strength. To make a connection with ultrasonic experiments on ergodic elastodynamic bil-
liards, the channels injecting and collecting the waves are assumed to be negligibly coupled to the medium and
to contribute essentially no dissipation. Within the RMT model we calculate the quantities of interest exactly,
employing the supersymmetry technique. This approach is found to be more accurate than another method
based on simplifying naive assumptions for the statistics of the eigenfrequencies and the eigenfunctions. The
results of the supersymmetric method are confirmed by Monte Carlo numerical simulation and are used to
reveal a possible source of the disagreement between the predictions of the naive theory and ultrasonic
measurements.
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I. INTRODUCTION

The statistics of waves in complex disordered and r
chaotic structures have been well modeled in recent year
random matrix theory~RMT!. The eigenstatistics of suc
structures are ergodically equivalent to those of cert
classes of random matrices. This has been established b
enormous literature, both experimental and theoretical,
applies to the complex dynamics of compound nuclei@1#,
and also to the somewhat simpler case of closed nondiss
tive wave billiards with chaotic ray trajectories@2#. More
recently attention has turned to the case of structures
open loss channels and/or internal dissipation@3–8#. This
evolution of focus has been dictated by the physical syst
available, for which it is difficult or impossible to eliminat
absorption, and/or minimize the dissipative effect of t
channels used to launch or detect the waves.

Of the many statistics that could be considered for s
structures, perhaps the simplest experimentally acces
one is the relative variance of the power transmission. T
quantity is related to cross section fluctuations in nucl
reactions, it is accessible in microwave experiments, an
of long standing interest in acoustics@8,9#. In Ref. @9# rela-
tive variances measured in a dissipative three-dimensi
ultrasonic billiard were compared to the predictions of
simple theory which assumes that the eigenstatistics
identical to those of the nondissipative case. Such an
sumption is strictly true only for very special cases of dis
pation. The theory was found to consistently overestim
the relative variance of the mean square transmitted sig
Our chief interest here is to develop a more rigorous the
for that variance and to compare it with the predictions of
naive theory.

As an adequate theoretical model of such a structure
will use an effective random matrix theory description, w
a random matrixH replacing the wave equation’s linear di
1063-651X/2004/69~3!/036206~10!/$22.50 69 0362
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ferential operator~see Ref.@4# and references therein for
more detailed discussion!. Then the complex amplitude o
the transmitted wave is simply proportional to thei j th matrix
element of the resolvent associated with the wave equa
G(E)[@EI1 i«I 2H1 iG#21. Here,I is the identity matrix,
the matrix G describes coupling to internal local-in-spa
dissipative channels, the parameter«.0 describes uniform
losses, andE is the spectral variable. The same model d
scribes microwave billiards, ultrasonic billiards, and nucle
reactions. The real symmetric positive semidefinite loss
eratorG can be written in terms of the states of the chann
(G5W†W in definitions of Ref.@10#! or in terms of absorp-
tion mechanisms. It is generally taken to be only wea
dependent onE. Thus both open and closed dissipative sy
tems are described by the same model. When losses are
ligible the experimental systems are usually invariant un
time reversal. The appropriate choice for the correspond
random matrixH should, therefore, be a real symmetric m
trix taken from the Gaussian orthogonal ensemble~GOE!.

Our quantity of prime interest isT5uGi j (E)u2, iÞ j ,
i.e., the product of retarded and advanced Green’s funct
~propagators!: Gji

R(E)[@EI1 i«I 2H1 iG# j i
21 and Gi j

A

5„Gji
R(E)…* , respectively. Except for slowly varying factor

of receiver gain and source strength, the quantityT repre-
sents the ultrasonic power of Ref.@9#.

For general nonperturbative statistical studies the o
generally applicable tool known at present is reduction to
Efetov’s zero-dimensional supersymmetric nonlinears
model @11#. In this way the problem of calculating RMT
ensemble averages reduces to performing a definite fin
dimensional integral over a space of supermatrices.
zero-dimensionals model can also be derived from the a
sumptions of RMT@10#, and is applicable to a variety o
quantum-scattering problems formulated in terms of rand
Hamiltonians@8–12#. Ideally, once the quantity of interest i
expressed in terms of the products of resolvents of the ef
©2004 The American Physical Society06-1
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tive HamiltonianH2 iG, its mean, its variance, and som
times its distribution function can be obtained.

Technical details of the supersymmetric reduction pro
dure depend essentially on the basic symmetries of the
derlying ensemble. It is well known that working with th
orthogonal ensemble leads to calculations, which are m
technically involved than those of similar calculations f
systems with broken time-reversal invariance~TRI!. In the
latter case, the corresponding ensemble is the Gaussian
tary ~GUE!, and one can go as far as calculating the f
distribution function of transmitted wave power in ergod
systems@4#. Unfortunately, the existing experimental resu
on power transmission are only available for systems w
preserved TRI.

The main goal of the present work is to explore transm
ted power statistics for ergodic TRI systems. We find tha
is possible to derive explicit analytical expressions for
first two moments of this quantity. We wish in particular
explain the differences, seen in Ref.@9#, between the predic
tions of the oversimplified~‘‘naive’’ perturbative! theory and
experimental measurements.

In Sec. II we use the supersymmetry method to der
expressions for mean and variance of transmitted powe
Sec. III, we confirm the results by numerical Monte Ca
calculation, and compare them with the results of the per
bative method of Refs.@4,9#. In Sec. IV we investigate a
hypothesis to explain the longstanding discrepancy betw
lab measurements in ergodic acoustic systems and n
RMT predictions. A summary is given in Sec. V.

II. SUPERSYMMETRIC CALCULATION FOR MEAN
AND MEAN SQUARED POWER

A. The system

In an ergodic system characterized by a randomN3N
HamiltonianH and a dissipation matrixG, a matrix element
of G(E)5@EI1 i«I 2H1 iG#21 represents the respons
spectrum~with E being the spectral variable!. Its squared
absolute valueGi j (E)Gi j* (E) denotes the spectral powe
density.

The elements of the random matrixH are zero-centered
Gaussian variables, and because we deal with power tr
mission inside time-reversal invariant systems, the matrixH
is real and symmetric. The relevant random matrix ensem
is, therefore, the GOE. Because of the inherent orthogo
invariance the dissipation matrix may be chosen to be d
onal: G5diag$g,g, . . . ,g,0, . . . ,0%, as we always can ex
press our matrices inG ’s natural basis. The numberM,N of
nonzero entries can be interpreted either as a numbe
equivalent open channels in the scattering system or,
number of equivalent localized ‘‘dampers’’ in a closed sy
tem with losses@9#. Note, that convergence generating p
rameter«.0 can be interpreted as the coupling to infin
number of external channels or, as uniform dissipation.

We are interested in the statistics of the wave poweT
transmitted from a source at pointj to a receiver at a differen
point i inside the system:T5Gi j (E)Gi j* (E), 1< i , j <N j
Þ i ~no summation overi and j ) @9#.
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B. Basic definitions and identities

To obtain expressions for the first two moments of t
transmitted powerT̄, T2 ~the bar indicates the ensemble a
eraging! we adopt a procedure similar to that of Ref.@10#.
We start with constructing a generating functionZ for our
quantities of interest by introducing four-component sup
vectorsFp ,

Fp
T5$xp*

T ,xp
T ,Sp~1!T,Sp~2!T%, p51,2,

where the components ofN-dimensional vectorsS are real
commuting variables, the elements of the vectorsx are anti-
commuting variables~Grassmannian!, and T stands for the
vector transposition. Indexp is used to distinguish betwee
retarded (p51) and advanced (p52) Green’s functions.
The latter can be obtained from the generating functio
Zp(E,Jp)5*@dFp#exp$(i/2)Lp(E,Fp ,Jp)%, where the ‘‘ac-
tions’’ Lp are defined asLp(E,Fp ,Jp)5Fp

†(Dp1Jp)Fp in
terms of the block-diagonal 434 symmetric supermatrice
@7–9,11#,

Dp5~EI2H ! ^ Lp1 i ~«I 1G! ^ LpLp ,

L15diag$I 2 ,I 2%, L25diag$I 2 ,2I 2%,

L15diag$I 2 ,I 2%, L25diag$2I 2 ,2I 2%,

J15diag$0,0,J(1),J(2)%, J25diag$0,0,J(3),J(4)%.

Here J(p) are N3N symmetric source matrices,I 2 is 232
identity matrix, and the integration measure is just a prod
of independent differentials of commuting and anticomm
ing variables. The generating function for the power m
ments T5Di j

21Di j*
21 and T25(Di j

21Di j*
21)2 then can be

shown to have the following representation:

Z~E,J!5Z1~E,J1!Z2~E,J2!5E @dF#expH i

2
L~E,F,J!J ,

~1!

in terms of 838 block-diagonal supermatricesD
5diag$D1 ,D2%, L5diag$L1 , L2%,L5diag$L1 ,L2%,J5diag
3$J1 ,J2%, and F5$F1 ,F2%, L(E,F,J)5L1(E,F1 ,J1)
1L2(E,F2 ,J2)5F†(D1J)F.

The Gaussian integral over the supervectors in Eq.~1! can
be also written as a superdeterminant

Z~E,J!5 )
p51,2

Zp~E,Jp!5 )
p51,2

Sdet21~Dp1Jp!.

Differentiating this expression with respect to elements
the symmetric source matrixJ one finds~cf. Refs.@10,12#!

]2Z~E,J50!

]Ji j
(1)]Ji j

(3)
5T, ~2!

]4Z~E,J50!

]Ji j
(1)]Ji j

(2)]Ji j
(3)]Ji j

(4)
5T2, ~3!
6-2
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VARIANCE OF TRANSMITTED POWER IN . . . PHYSICAL REVIEW E69, 036206 ~2004!
relating bothT and T2 to the Gaussian integrals over th
supervector components. Using the shorthand nota
^¯&F5*@dF#(¯)exp$iL(E,F)/2%, we can write

T5^F1@F#&F , ~4!

T25^F2@F#&F , ~5!

where we introduced the following products of the comm
ing components of the supervectors:

F1@F#5S~1!1iS~1!2iS~1!1 jS~1!2 j ,

F2@F#5S~1!1iS~1!2iS~2!1iS~2!2iS~1!1 jS~1!2 j

3S~2!1 jS~2!2 j .

Now, we proceed with GOE averaging of the above expr
sions for the moments of the transmitted power. In w
follows we use the overbar to denote the averaging oveH
with the weight exp$2(N/4v2)Tr HTH%, so that Hi j Hkl
5(v2/N)(d ikd i l 1d i l d jk), i.e., the ensemble averaging.
can be performed exactly with the help of the identity:

expH i

2
F†~H ^ L !FJ 5expH 2

v2

4N
StrA2J ,

where we introduced a new 838 supermatrix: A
5L1/2( i 51

N F iF i
†L1/2. The elements of the supermatrixA are

labeled as follows:

A5S Amn
11 Amn

12

Amn
21 Amn

22 D ,

wherem,n51, . . . ,4. With thehelp of these notations w
can expressT̄ and T2 in a unified form via the representa
tions

^F1,2@F#&F5E @dF#F1,2@F# expH i

2
EF†LF

2
1

2
F†~G ^ L!LF2

v2

4N
StrA22

«

2
StrALJ

as both formulas differ only in the form of preexponent fa
tors F.

C. Performing F integration

The next step of the supersymmetric calculation is
so-called Hubbard-Stratonovich decoupling@11,12#,

expH 2
v2

4N
StrA22

«

2
StrALJ

5E @dR#expH 2
N

4
StrR21 i

«

2v
NStrRL1 i

v
2

StrRAJ ,
03620
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^F1,2@F#&F5E @dR#expH 2
N

4
StrR21 i

«

2v
NStrRLJ

3E @dF#F1,2@F#expH 2
i

2
F†L1/2f 21L1/2FJ ,

~6!

where we defined 8N38N supermatrixf,

f 5@2EI ^ I 82vI ^ R2 i ~G ^ L!#21

5@~ I N^ I 82 iG ^ „LG21!…G#21,

with G52EI82vR. In Eq. ~6! we can integrate outF vari-
ables, using Wick’s theorem for supervectors, and bring
remaining integral into a form suitable for a saddle-po
approximation in the limitN→` @11,12#. Then for i , j .M
we obtain

E @dF#F1,2@F#expH 2
i

2
F†f 21FJ 5F1,2@G

21#~Sdetf !1/2.

~7!

Here we introduced the notations

F1@G21#5
1

4
$~G21!33

121~G21!33
21%2, ~8!

and

F2@G21#5$~G1
21!34

11~G1
21!34

221~G1
21!33

12~G1
21!44

12

1~G1
21!34

12~G1
21!43

12%, ~9!

whereG1
215$G211(G21)T%/2. At this point we summarize

the results forT̄ andT2 separately,

T̄5E @dR#F1@G21#exp$2NL@R#1dL%, ~10!

T25E @dR#F2@G21#exp$2NL@R#1dL%, ~11!

where the exponential is given by

L@R#5
1

4
StrR21

1

2
Str ln~2EI82vR!, ~12!

dL5 i
«

2v
N StrRL2

M

2
Str ln@ I 82 igL~2EI82vR!21#.

~13!

The remaining step is to carry out integration in Eqs.~10!
and ~11! by the saddle-point method in the limit of largeN.
The stationarity condition forL@R# yields the saddle-poin
equationRs5v/(2EI82vRs). Its solution is given by a
saddle-point manifold in a space of 838 supermatrices
@11,10#,
6-3
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Rs52
E

2v
I 81 ipnvT21LT52

E

2v
I 82pvnQ. ~14!

Here n denotes the mean eigenvalue density given
the GOE by the Wigner semicircular lawn
5A4v22E2/(2pv2). After integrating out the massiv
Gaussian fluctuations around the saddle-point manifold
Eqs.~10! and ~11!, the first two moments of the transmitte
power are expressed as integrals over the supermatriceQ
5T21LT @11,10#,

T̄

~pn!2
5^F1@Q#&Q

5E @dQ#F1@Q#Sdet2M /2F I 81 i
E

2v2
gL1 ipngQLG

3expH 2
i

2
«pnN StrQLJ , ~15!

T2

~pn!4
5^F2@Q#&Q . ~16!

This step completes derivation of the zero-dimensional n
linear s model.

D. Performing Q integration

To evaluate the superintegrals in Eqs.~15! and ~16!, we
need to calculateF1@Q# and F2@Q# first. At this point we
employ the Verbaarschot-Weidenmueller-Zirnbauer para
etrization@10# for the matrixQ. Both F1@Q# andF2@Q# are
the functions of matrix elements ofQ, obtained by the forma
substitution ofQ for G21 in Eqs.~8! and~9!, as follows from
Eq. ~14!. Matrix elements ofQ are, in turn, the functions o
eight commuting and eight anticommuting variables. A
though we are interested in the highest order terms in a
commuting variables@13#, the calculation ofF1@Q# and
t
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F2@Q# is too cumbersome to be done by hand. The calcu
tion can be managed most efficiently by employing the sy
bolic manipulation package epicGRASS @14#. The outputs of
the epicGRASS ~the highest order terms in anticommutin
variables! need to be further integrated over all the antico
muting variables, and finally over all the commuting va
ables except ‘‘eigenvalues’’@10#. After those steps we chang
to thel variables of Ref.@11#, and arrive at the representa
tion for T andT2 in terms of a threefold integral. The detai
of this procedure are outlined in Appendix A. Here we on
give the final expression

T̄

~pn!2
5E

1

`

dl1E
1

`

dl2E
21

1

dlF1~l,l1 ,l2!

3exp$2e~l1l22l!%m~l,l1 ,l2!P~l,l1 ,l2!,

~17!

T2

~pn!4
5E

1

`

dl1E
1

`

dl2E
21

1

dlF2~l,l1 ,l2!

3exp$2e~l1l22l!%P~l,l1 ,l2!m~l,l1 ,l2!,

~18!

wheree52pnN«, and

m~l,l1 ,l2!5
12l2

~l1
21l2

21l222ll1l221!2
,

F1~l,l1 ,l2!512l21~l1
221!l2

21~l2
221!l1

2 ,

F2~l,l1 ,l2!52~12l1
22l2

222ll1l213l1
2l2

2!2.

The remaining factorP(l,l1 ,l2) contains all the informa-
tion about the dissipation channels and comes from a ca
lation of the relevant superdeterminant~cf. Ref. @15# for the
GUE case!
Sdet2M /2F I 81 i
E

2v2
gL1 ipngQLG5S v21g212pngl

A~v21g2!214pngv2~v21g2!l1l21~2pngv2!2~l1
21l2

221!
D M

5
~g1l!M

~Ag212gl1l21l1
21l2

221!M

5P~l,l1 ,l2!, ~19!
.

whereg5(v21g2)/(2pngv2), and we have also used

StrQL524i ~l1l22l!. ~20!

To generalize Eqs.~17! and~18! to the case of nonequipoten
dampers we just need to replaceP(l,l1 ,l2) with
P~gi ,l,l1 ,l2!5)
i

~gi1l!

~Agi
212gil1l21l1

21l2
221!

,

see, for example, Refs.@10,16#. It can be verified that Eq
6-4
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~17! yields the same result forT̄ as follows from adopting the
final formula of Ref.@10#.

E. Special case of uniform damping: Comparison with naive
calculation

Next, we compare results of the present~supersymmetric!
calculation with the results of Ref.@9# for the case of uniform
dampingM50,eÞ0. In that special case the naive calcu
tion of Ref.@9# should be exact. In order to obtainT̄ we need
to evaluate the integral

I ~x!5E
1

`

dl1E
1

`

dl2E
21

1

dlexp$ ix~l1l22l!%

3F1~l,l1 ,l2!m~l,l1 ,l2!, ~21!

where we have denotedx5 i e. The Fourier transformation
with respect to thex variable,

Ĩ ~ t !5E
2`

`

I ~x!exp$2 ixt%dx,

has a meaning of averaged response power in the time
main for a system without dissipation. It can be written in
more convenient form

Ĩ ~ t !52pE
1

`

dl1E
1

`

dl2E
21

1

dld~l2l1l21t !

3F1~l,l1 ,l2!m~l,l1 ,l2!. ~22!

After performingl integration, we make the change of va
ables: u5l1l2 ,z5l1

2 suggested in Ref.@11#, and after a
lengthy but straightforward procedure arrive at a very sim
expression

Ĩ ~ t !54pu~ t !.

which can be immediately Fourier inverted, yielding

I ~x!5
22i

x
.

This is equivalent to the first moment of the transmitt
power given by

T̄

~pn!2
5

2

e
, ~23!

and indeed coincides with the value predicted by the na
calculation of Ref.@9#.

The same steps can be repeated when calculating the
ond momentT2. One starts with Fourier-transforming th
right-hand side of Eq.~18!, then changes to the variablesu
andz, carries out the remaining double integration explici
and finally applies the Fourier inversion. Intermediate cal
lations are too long to be reproduced in the paper, but
final result reads
03620
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T2

~pn!4
5

1

e4
~5128e17e2!2

e22e

e4
~512e1e2!

1
e2e

e4
E1~e!~10110e13e21e3!

1
ee

e4
E1~e!~210110e23e21e3!, ~24!

where

E1~z!5E
z

`e2s

s
ds.

This matches perfectly with the corresponding result of R
@9#.

III. NUMERICAL RESULTS FOR THE MOMENTS
OF THE TRANSMITTED POWER

The predictions Eqs.~17! and~18! of the supersymmetric
calculations can be compared with Monte Carlo evaluati
of the first two moments ofT. Towards this goal we numeri
cally generated an ensemble ofN3N real symmetric matri-
cesH typically choosing 1500 ensemble realizations and t
ing N51000. The procedure is almost identical to th
described in Ref.@4#. The entries inH are constructed using
a Gaussian random number generator such thatHi j Hkl
5(1/N)(d ikd j l 1d i l d jk). To simulate the case of the uniform
damping we useG5«I . To simulate the case of a finit
number of decay channels we take the diagonalG
5diag$g,g, . . . ,g,0, . . . ,0% with M,N identical positive
entries. Then, for every ensemble realization we generate
off-diagonal elements of the resolvent matrix according
Gi j (E)5@EI1 iG2H#21, modeling in this way the re-
sponse at a sitei due to excitation at the sitej, with E stand-
ing for the spectral parameter, and bothi and j chosen to be
larger thanM to avoid direct coupling to the damping cha
nels.

Let us first consider the case of the uniform damping:G
5«I . For a fixed matrix sizeN and fixed value of the spec
tral variableE we explore a range of«. For E50 the modal
density ]N/]E is given by n51/p. Mean level width ḡ
52pn^IEr& in this case is identical toe52pnN«. In Fig. 1
we compare both moments of powerT as given by Eqs.~23!
and ~24! with the results of Monte Carlo simulations fo
several values ofe. It is evident that numerical results co
respond well with the theoretical curves.

To repeat the same procedure for finite number of lo
dampersM we evaluated the three-dimensional integrals
Eqs. ~17! and ~18! numerically for a broad range of th
scaled mean level widthḡ @4#. The difficulties of the numeri-
cal integration arising due to the singularity ofm(l,l1 ,l2),
are easy to overcome by employing the change of varia
suggested in Ref.@17#. The results are presented in Fig. 2 a
also show a good agreement with the theory.
6-5
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IV. RELATIVE VARIANCE

Dissipation within the framework of the present approa
is parametrized in terms of quantitiesg, M, and e. At the
same time those quantities are not readily accessible ex
mentally, and in any case were not measured in the w
reported in Ref.@9#. For this reason any direct compariso
with those measurements is not feasible. Nevertheless
choosing plausible values for the relevant parameters we
investigate the sign and magnitude of the discrepancies
ing between the predictions for the relative variance of
transmitted power calculated in the two theories under
cussion. As a result of such comparison we found that
discrepancy between the naive analysis and the present~su-
persymmetric! calculation is similar to one reported prev
ously in Ref.@9# between the naive theory and actual me
surements.

The comparison is carried out by first considering t
mean spectral energy density~mean square response! in the
time domain:E(t)5uGi j (t)u2, where Gi j (t) is the ~band-
limited! time-domain Green’s function. Similar quantitie
were studied previously in the context of the delay time d
tributions in chaotic cavities@18#. Their statistics can be ob
tained from the inverse Fourier transform of the two-po
correlation functionT(V)5Gi j (E)Gi j* (E1V) @10,17# with
respect toV. The expression forT(V) can be obtained by
replacing 2i« with V in the derivation of Eq.~17! ~see also
Ref. @17#!. Thus,

FIG. 1. ^T& and^T2& are plotted on log scale as functions of th
parametere for the case of uniform damping. The solid lines re
resent theoretical predictions@Eqs.~17! and~18!#. For each numeri-
cally obtained̂ T& and ^T2&~represented by dots! 1500 samples of
uGi j (E)u2, iÞ j , were computed. 5s error bars were compute
based on the observed variances ofT andT2.
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E~t!;E
1

`E
1

`

dl1dl2P~t,l1 ,l2! f ~t,l1 ,l2!

3
u~l1l22t11!u~t2l1l211!„12~t1l1l2!2

…

~l1
21l2

21~t1l1l2!222l1l2~t1l1l2!21!2
,

~25!

where t5t/(2pnN) is a dimensionless time,f (t,l1 ,l2)
5(l1

221)l2
21(l2

221)l1
2112(t1l1l2)2, and

P (t, l1 , l2) 5 (g1 2t 1 l1l2)M (g2 1 2gl1l2 1 l1
2 1 l2

2

21)2M /2. The generalization to the case of nonequipot
channels is straightforward,P(t,l1 ,l2)5) i

M(gi12t
1l1l2)(gi

212gil1l21l1
21l2

221)21/2. The naive method
yields a simpler expression for spectral energy den
@9,18,19#,

E~t!naive5E0S 11
2st

M D 2M /2

, ~26!

where the initial logarithmic decay rates is proportional to
the mean resonance width, given by a Porter-Thomas di
bution.

In Ref. @9# E(t) was measured experimentally, and fitte
into the naive result~26! to extract values forM ands. The
two parameters were further used to predict the relative v
ance ofT ~relative variance5^T2&/^T&221). Having the ex-
act result@Eq. ~25!# we can now attempt to explain the 20
30 % overprediction of relative variance reported in Ref.@9#.
Clearly, by specifying certain values forM, g, and e the
wave scattering in an ergodic sample can be completely
scribed, since both spectral energy density and relative v
ance are fixed uniquely. Further assuming thatE(t) as given
by Eq.~25! is the ‘‘measured’’ energy density of our system
we can repeat the procedure of Ref.@9#. Namely, we fit it to
E(t)naive in order to calculate relative variance according
the two-parameter naive formula used in Ref.@9# for com-
parison with actual measurements. Such a fit allows us
extract values forMnaive , snaive , andE0 that may or may
not correspond to the exact values. The true value of rela
variance as determined from Eqs.~17! and~18! may then be
compared to the corresponding naive prediction.

By a numerical three-parameter fit over the same dyna
range~of a factor ofe10) as in Ref.@9#, we obtained values
for E0 , snaive , and Mnaive . In spite of the naivete of the
model the fits were generally quite good, as observed in R
@9#, and we can substitute the obtained values into the
mula for the relative variance from Ref.@9#,

^T2&

^T&2
21511

9

s

M ~M22!

~M24!~M26!
24H i 11s2

~M22!2

M2
i 2J ,

~27!

where
6-6
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FIG. 2. Mean power~main figure! and mean square power~inset! for ~a! M54, ~b! M510, ~c! M540, ~d! M5400. Solid lines
represent theoretical predictions@Eqs.~17! and ~18!#. For each numerically obtained̂T& and ^T2& ~dots! 1500 samples ofuGi j (E)u2 were
computed. We imposed the restrictionsiÞ j , and i .M , j .M for the nonuniform damping case, to avoid ‘‘recording’’ the response fr
damped sites or from the ‘‘source’’ sitej, and to correspond to the assumptions in the theoretical analysis. For the numerically obtaine
power, 20s, 10s, and 5s error bars were computed for the scaled mean level widthḡ50.1,1.0,10.0, respectively. They were based on
observed variances ofT andT2. Error bars for the power variance are not shown, because they are smaller than the size of the d
M54 the theoretical prediction for the variance does not exist.
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The basic steps leading to Eq.~27! are explained in Appen
dix B.

The results for several values of parameters are sum
rized in Tables I and II. It appears that in the absence
overall damping~Table I! the actual value of relative vari
ance is very close to its naive estimate. However, when
consider the case of a small number of strong dampers
system with a uniform backgroundeÞ0 ~Table II!, the dif-
ference becomes similar to the discrepancy found in Ref.@9#.
A more definitive comparison of Eqs.~17! and ~18! with

TABLE I. Relative variance in absence of overall damping.

M g s Naive Exact

10 20.017 0.497 59.881 59.492
20 20.017 0.989 14.419 14.397
20 10.033 1.930 7.582 7.574
14 2.918 4.066 4.990 4.776
03620
a-
f

e
a

measurements awaits an experiment in which the valuese
and thegi can be ascertained independently.

V. CONCLUSIONS

In the present paper the special cases of two and
point correlation functions of the transmitted power spectr
have been calculated both analytically and numerically
ergodic dissipative structures. In the context of the wa
scattering the former corresponds to the mean and the l
to the mean square of the transmitted wave powerT.

The ergodicity assumption is implicit by virtue of ou
replacement of the actual differential operator describ
wave motion by a large random symmetric matrix. Dissip
tion is taken to act both locally in space~‘‘localized damp-
ers’’ or dissipative channels! and uniformly within the
sample.

In accord with earlier results@4#, the presence of nonuni
form, or localized, sources of dissipation requires the use
an elaborate nonperturbative technique—the so-called z

TABLE II. Relative variance in presence of overall damping.

M g e s Naive Exact

1 1.0 1.0 1.302 7.711 6.801
1 2.0 1.0 1.205 7.908 6.809
1 5.0 1.0 1.126 8.195 6.784
4 10.0 1.0 1.330 7.194 6.134
6 9.0 0.5 1.008 10.557 8.611
6-7
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ROZHKOV, FYODOROV, AND WEAVER PHYSICAL REVIEW E69, 036206 ~2004!
dimensional supersymmetric nonlinears model—to obtain
the moments of the transmitted power. It is found that
naive approach fails to correctly describe mean squ
power; the failure is ascribable at least in part to the assu
tion of real Gaussian eigenmodes inherent in that appro
The supersymmetry technique allows one to bypass the
ficulty of identifying eigenmode statistics, and to arrive
expressions which are in agreement with Monte Carlo sim
lations, and appear to be in better agreement with experim
tally measured values of variance.
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APPENDIX A: EVALUATION OF THE SUPERINTEGRAL

In this appendix we elaborate on steps leading to the m
results of Sec. II, expressed by Eqs.~17! and ~18!. We start
by evaluatingF1@Q# and F2@Q# with EPICGRASS. The pro-
gram extracted terms of lowest and highest order in antic
muting variables, which are, generally, the only term
needed. The lowest order term was found to be unimpor
since the resulting integrands are not singular at the bou
ary @11,13#. Then, we simplified the output ofEPICGRASS

with MATHEMATICA and reduced the superintegral to a m
tiple integral over commuting and anticommuting variab
@10#.

The elements of matrixQ are introduced into theEP-

ICGRASS in terms of the parametrization of Ref.@10#. Eight
commuting variables are: the eigenvaluesm1 ,m2 ,m, the pa-
rameters of SU~2! groupm,r ,s, and two anglesw1 andw2.
The integration region in Eqs.~15! and ~16! corresponds to
2`,m1 ,m2 ,m,r ,s,`, 0,m,1, 0,w1 ,w2,2p @20#.
Then, afterEPICGRASSextracts the highest order term in a
ticommuting variables, we have, for example, forF1@Q#,

F1@Q#5232z2232z1z2cosw1cosw2sinw1sinw2

2z1
2~36 cosw1

2cosw2
2112 cosw1

2sinw2
2

112 cosw2
2sinw1

214 sinw1
2sinw2

2!

2z2
2~36 sinw1

2sinw2
2112 cosw1

2sinw2
2

112 cosw2
2sinw1

214 cosw1
2cosw2

2!,

wherez1,25m1,2A11m1,2
2 andz5 imA12m2 @21,22#.

Eight anticommuting variables are readily integrated
according to the convention*dxx51/(2p)1/2. Note that this
convention is different from the one we took in the beginni
of Sec. II in the derivation of generating function. Howev
03620
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this discrepancy has no influence on the remaining proc
as long as we use the integration measure of Ref.@10#. Fi-
nally, integrating over the angles as well as over the para
eters of SU~2! we arrive at

F̃1@Q#5216~z1
21z2

222z2!, ~A1!

where we indicated the integration@which does not affect
other factors in the integrand in Eq.~15!# by tilde.

Upon the substitution of eigenvalues into Eq.~A1! we can
compare our expression forT̄ with the final formula of Ref.
@10#. We switch to the combinations

l1,2
V 5m1,2.

2 , lV5m2,

which are the final variables appearing in the resulting
pression of Ref.@10#. Two results match perfectly, and w
can proceed with the corresponding calculation of the sec
moment of the transmitted power. Before doing that
again change variables, this time—to the eigenvalues of E
tov’s parametrization, according to

l1,2
V 5l1l26A~l1

221!~l2
221!.

The domain of the integration has to be modified as w
1,l1 ,l2,`,21,l,1. The Efetov’s eigenvalues ar
somewhat more convenient for the calculations done at
end of Sec. II, where we compared the exact and naive
sults for the first two moments in uniform damping case.

The analogous procedure forT2 yields

F̃2@Q#54~4x224xx124xx21x1
21x2

2

12x1x218z1
218z2

2216z2!2, ~A2!

wherex1,25112m1,2
2 , x5122m2, and after passing to Efe

tov’s variables in Eqs.~A1! and ~A2! we obtain the final
results of Sec. II—Eqs.~17! and ~18!.

APPENDIX B: DETAILS OF THE NAIVE CALCULATION

The method of Ref.@9# leading to Eq.~27! is presented
here for completeness. Mean square power is given b
modal expansion~mean power requires a similar though sim
pler calculation!,

T25 (
r ,m,l ,k

ui
ruj

r*

E2Er2 i z r

ui
m* uj

m

E2Em1 i zm

3
ui

l* uj
l

E2El2 i z l

ui
k* uj

k

E2Ek1 i zk
. ~B1!

We make assumptions about a lack of correlations amo
modal amplitudes and frequencies and widths, and conc
6-8
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^T2&5(
r

^u4&2

~E2Er2 i z r !
2~E2Er1 i z r !

2
1(

rÞ l

^u2&4

~E2Er2 i z r !
2~E2Er1 i z l !

2

1(
rÞ l

^u2&4

~E2Er2 i z r !~E2Er1 i z r !~E2Er2 i z r !~E2Er1 i z r !
. ~B2!

The summations over the modes are replaced with integrations (( r→Nn*dEr), and eigenfrequency correlations are taken
be those of GOE, by introducing the Dyson two level functionY2 @12#. We have

^T2&5
Nn^u4&2

~pn!4 E
2`

` dx

~x2 i z r !
2~x1 i z r !

2
1

2~Nn!2^u2&4

~pn!4 E
2`

` E
2`

` @12Y2~pNnz!#dxdz

~x21z r !@~x2z!21z l
2#

1
~Nn!2^u2&4

~pn!4 E
2`

` E
2`

` @12Y2~pNnz!#dxdz

~x2 i z r !
2~x2z1 i z l !

2
, ~B3!
e
ov

-
,

where x5E2Er , z5Er2El . The remaining steps of th
naive ensemble averaging procedure include integration
a distribution of widths, given by@12#

pS z r

Ḡ
D 5

~M /2!M /2

G~M /2! S z r

Ḡ
D M /221

expH 2M
z r

2Ḡ
J , ~B4!

whereḠ is average resonance width andG(s) is the Gamma
function,
s
LX

s
n

03620
er ^T2&5Nn^u4&2
p

z r
3
12~Nn!2^u2&4I ,

I 5
z r1z l

2z rz l
E

2`

` ~12Y2~pNnz!!dz

z21~z r1z l !
2

.

The average overz r and z l is indicated by overbar. After
substitutinĝ u2&51/N, ^u4&/^u2&253 ~as for Gaussian ran
dom numbers! and integrating with respect to eigenwidthsz
integration becomes straightforward and results in Eq.~27!.
l
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