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We use random matrix theofRMT) to study the first two moments of the wave power transmitted in
time-reversal invariant systems having ergodic motion. Dissipation is modeled by a number of loss channels of
variable coupling strength. To make a connection with ultrasonic experiments on ergodic elastodynamic bil-
liards, the channels injecting and collecting the waves are assumed to be negligibly coupled to the medium and
to contribute essentially no dissipation. Within the RMT model we calculate the quantities of interest exactly,
employing the supersymmetry technique. This approach is found to be more accurate than another method
based on simplifying naive assumptions for the statistics of the eigenfrequencies and the eigenfunctions. The
results of the supersymmetric method are confirmed by Monte Carlo numerical simulation and are used to
reveal a possible source of the disagreement between the predictions of the naive theory and ultrasonic

measurements.
DOI: 10.1103/PhysReVvE.69.036206 PACS nunier05.45.Pq, 62.36:d, 78.20.Bh, 73.2%b
I. INTRODUCTION ferential operatofsee Ref[4] and references therein for a

more detailed discussipnThen the complex amplitude of

The statistics of waves in complex disordered and raythe transmitted wave is simply proportional to ffigh matrix
chaotic structures have been well modeled in recent years lslement of the resolvent associated with the wave equation
random matrix theory(RMT). The eigenstatistics of such G(E)=[El+isl—H+il']". Here,l is the identity matrix,
structures are ergodically equivalent to those of certairthe matrix I' describes coupling to internal local-in-space
classes of random matrices. This has been established by dissipative channels, the parameterO describes uniform
enormous literature, both experimental and theoretical, antbsses, andE is the spectral variable. The same model de-
applies to the complex dynamics of compound nugli scribes microwave billiards, ultrasonic billiards, and nuclear
and also to the somewhat simpler case of closed nondissipaeactions. The real symmetric positive semidefinite loss op-
tive wave billiards with chaotic ray trajectorig®]. More  eratorl" can be written in terms of the states of the channels
recently attention has turned to the case of structures witl'=W'W in definitions of Ref[10]) or in terms of absorp-
open loss channels and/or internal dissipati@r8]. This  tion mechanisms. It is generally taken to be only weakly
evolution of focus has been dictated by the physical systemgependent oiE. Thus both open and closed dissipative sys-
available, for which it is difficult or impossible to eliminate tems are described by the same model. When losses are neg-
absorption, and/or minimize the dissipative effect of theligible the experimental systems are usually invariant under
channels used to launch or detect the waves. time reversal. The appropriate choice for the corresponding

Of the many statistics that could be considered for suclrandom matrixH should, therefore, be a real symmetric ma-
structures, perhaps the simplest experimentally accessibtex taken from the Gaussian orthogonal ensemd©E).
one is the relative variance of the power transmission. This Our quantity of prime interest isT=|G;;(E) 2i#j,
quantity is related to cross section fluctuations in nucleat.e., the product of retarded and advanced Green’s functions
reactions, it is accessible in microwave experiments, and i§ropagators GJRi(E)E[E|+i8| —H+il“]j’i1 and Gﬁ
of long standing interest in acoustif8,9]. In Ref.[9] rela- =(Gij(E))*, respectively. Except for slowly varying factors
tive variances measured in a dissipative three-dimensionalf receiver gain and source strength, the quarfityepre-
ultrasonic billiard were compared to the predictions of asents the ultrasonic power of R¢€].
simple theory which assumes that the eigenstatistics are For general nonperturbative statistical studies the only
identical to those of the nondissipative case. Such an asgienerally applicable tool known at present is reduction to the
sumption is strictly true only for very special cases of dissi-Efetov’s zero-dimensional supersymmetric nonlinear
pation. The theory was found to consistently overestimatenodel [11]. In this way the problem of calculating RMT
the relative variance of the mean square transmitted signaénsemble averages reduces to performing a definite finite-
Our chief interest here is to develop a more rigorous theorglimensional integral over a space of supermatrices. The
for that variance and to compare it with the predictions of thezero-dimensionat- model can also be derived from the as-
naive theory. sumptions of RMT[10], and is applicable to a variety of

As an adequate theoretical model of such a structure wguantum-scattering problems formulated in terms of random
will use an effective random matrix theory description, with Hamiltoniang8—-12]. Ideally, once the quantity of interest is
a random matriXH replacing the wave equation’s linear dif- expressed in terms of the products of resolvents of the effec-
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tive HamiltonianH—iT", its mean, its variance, and some- B. Basic definitions and identities
times its distribution function can be obtained. To obtain expressions for the first two moments of the
Technical details of the supersymmetric reduction proce-

. p— _2 . . _
dure depend essentially on the basic symmetries of the uri[?;sinméttviz g%vgezl'éT rét:heeiiltj?(er g;g:ﬁ::eti t':]heaf gfeRné?(IE av
derlying ensemble. It is well known that working with the 9 . pta pro . . '

g\/e start with constructing a generating functi@rfor our

orthogonal ensemble leads to calculations, which are mor Lantities of interest by introducing four-component SUper-
technically involved than those of similar calculations for\q/ectorsq) y 9 P P
p 1

systems with broken time-reversal invarian@dl). In the

latter case, the corresponding ensemble is the Gaussian uni- T_g *T T T T —

tary (GUE), and one cF:)an gogas far as calculating the full Pp=ixp xp S(1) 52 p=12,

distribution function of transmitted wave power in ergOdiC where the components M-dimensional vectors are real

systemg4]. Unfortunately, the existing experimental results commuting variables, the elements of the vectpare anti-

on power transmission are only available for systems withtommuting variablegGrassmannian and T stands for the

preserved TRI. vector transposition. Indep is used to distinguish between
The main goal of the present work is to eXplore transmit'retarded p: 1) and advanced F(: 2) Green’s functions.

ted power statistics for ergodic TRI systems. We find that itThe |atter can be obtained from the generating functions:

is possible to derive explicit analytical expressions for theZp(E,:;p)=f[d<bp]exp{(i/2)£p(E,<I>p,3p)}, where the “ac-

first two moments of this quantity. We wish in particular to ¢jong» £, are defined aﬂp(E,q)p,ﬁp):@g(@vaﬁp)q)p in

explain the differences, seen in RE9], between the predic- (orms of the block-diagonal 44 symmetric supermatrices

tions of the oversimplified“naive” perturbative) theory and [7-9,11,

experimental measurements.

In Sec. Il we use the supersymmetry method to derive Dp=(El-H)®Lp+i(el +T)®AL,,
expressions for mean and variance of transmitted power. In
Sec. lll, we confirm the results by numerical Monte Carlo L,=diadl,,l,}, Ly=diadgl,,—I,},
calculation, and compare them with the results of the pertur-
bative method of Refs[4,9]. In Sec. IV we investigate a Aq=diadl,,l,}, A,=diag{—1,,—1,},

hypothesis to explain the longstanding discrepancy between
lab measurements in ergodic acoustic systems and naive J;=diag(0,0J"),J@  3,=diag0,0)®,J*)},
RMT predictions. A summary is given in Sec. V.
Here J®) are NX N symmetric source matrices, is 2x 2
identity matrix, and the integration measure is just a product
II. SUPERSYMMETRIC CALCULATION FOR MEAN of independent differentials of commuting and anticommut-
AND MEAN SQUARED POWER ing variables. The generating function for the power mo-
ments T=D;; "0} ~* and T?=(D;; "D} *)? then can be
A. The system shown to have the following representation:
In an ergodic system characterized by a randdgmN
HamiltonianH and a dissipation matrik, a matrix element

i
of G(E)=[El+iel—H+iI']"! represents the response Z(E"J)Zzl(E"Jl)ZZ(E"JZ):f[d(p]eX%Eg(E’q)"}))’

spectrum(with E being the spectral variablelts squared 1)
absolute vaIueGij(E)Gi’}(E) denotes the spectral power i )
density. in terms of 8<8 block-diagonal supermatricesd

The elements of the random matiik are zero-centered =d|~ag{~©1,332}, L=diag[Ly, Lz},A=d|aq{Al,A2},3=dlag
Gaussian variables, and because we deal with power tran&{J1.32}, and (DT={<bl,d>2}, L(E,@,3)=£4(E,®1,31)
mission inside time-reversal invariant systems, the madrix +£2(E'¢2’32):¢ (D+3). )
is real and symmetric. The relevant random matrix ensemble The Gaussian integral over the supervectors in(Eqcan
is, therefore, the GOE. Because of the inherent orthogond!® &lSo written as a superdeterminant
invariance the dissipation matrix may be chosen to be diag-
onal: I'=diag{y,7, ...,7.0,....,Q, as we always can ex- ZEN=11 Zy(E,3p) = 11 Sdet {(D,+3p).-
press our matrices ihi’s natural basis. The numb&t <N of p=12 p=12
nonzero entries can be interpreted either as a number of o ) ) )
equivalent open channels in the scattering system or, as IalfferenUatm_g this expression Wlth respect to elements of
number of equivalent localized “dampers” in a closed sys-the symmetric source matrix one finds(cf. Refs.[10,12)
tem with losseq9]. Note, that convergence generating pa-

) : A 2 A
rametere >0 can be interpreted as the coupling to infinite J°Z(E,3=0)

. L2 —=T, (2
number of external channels or, as uniform dissipation. a\]i(;[)tg‘]i@)

We are interested in the statistics of the wave power . .

transmitted from a source at pojntio a receiver at a different #Z(E,3=0)
point i inside the systemT=G;;(E)G}|(E), 1<i,j<N]j 0 (2)’ & (4):1—21 3)
#i (no summation over andj) [9]. NN RN N
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relating bothT and T? to the Gaussian integrals over the N , . E
supervector components. Using the shorthand nOtatiOhFl,Z[(Dbe:j [dR]exp — 7 StR*+i 5~ NStRA
(Y= 1dP](---)expiL(E,P)/2}, we can write

T=(F{P])e, (4) xf [d(I)]Flyz[(I)]eXpl’_iiq)’TLl/Zf—lleq)]’
T=(F[®])a, ) ©

) ) where we defined I8 X 8N supermatrixf,
where we introduced the following products of the commut-

ing components of the supervectors: f=[—El®lg—uvl ®R—i(T®A)]
Fi[®]=S(1)5S(1)2S(1)1;S(1)z , =[(In@lg=iT® (A6 H))e] T,
— _ _ _ ) ) ) with &= —Elg—vR. In Eq. (6) we can integrate oup vari-
FAPI=S(DuS(1)28(2)48(2)25(1)yS(1)z, ables, using Wick's theorem for supervectors, and bring the
X 8(2)1jS(2)5; - remaining integral into a form suitable for a saddle-point

approximation in the limitN—cc [11,12. Then fori,j>M
Now, we proceed with GOE averaging of the above expreswe obtain
sions for the moments of the transmitted power. In what )
follows we use the overbar to denote the averaging éver e | 1 12
with the weight exp-(N/4v?)TrHTH}, so that HyHy J [dq)]':l'icb]e"p{ 7T (D] F1 4@ 71(Sdet) ™
= (v%IN) (88 + & 8), i.e., the ensemble averaging. It (7)
can be performed exactly with the help of the identity:

Here we introduced the notations

i v?
— = - 1
ex;)‘2¢*(H®L)®]—expr N StrAz], Fl[qﬁfl]:Z{(@*l)%g_i_(@fl)gl 2 ®)

where we introduced a new X3 supermatrix: A 5.4
=LY2sN  ®;®LY2 The elements of the supermatixare

labeled as follows: Fol &1 ={(6, )36, H3+ (6. H35 6.3

+(& hH36ThE (9)

11 12
Amn Amn

21 22
Amn Amn

where® '={®&"1+ (&) T}/2. At this point we summarize
the results fofT and T? separately,

wherem,n=1, ... ,4. With thehelp of these notations we
can expresg andT? in a unified form via the representa- _
tions T- | [dRIF.[6 ex-NLIRI+ 50}, (10)
i _
<F1,z[‘D]><D=f [dP]F, P ]exp SERTLE T2=f [dRIF[6 Yexp(—NL[R]+5oL), (1D
1 v? € S
- E(I)*(F@A)Ld)— mStrAZ— SStAA where the exponential is given by
1 5 1
as both formulas differ only in the form of preexponent fac- LIR]= 7 StR"+ 5 Strin(—Elg—vR), (12)
torsF.
. 8 M . 71
C. Performing ® integration SL=I ZN StrRA — ?Strlr'[lg—l'yA(— Elg—vR)™"].
The next step of the supersymmetric calculation is the (13

so-called Hubbard-Stratonovich decouplirid, 17,
The remaining step is to carry out integration in EQK))
and(11) by the saddle-point method in the limit of larde
The stationarity condition fol’[ R] yields the saddle-point
N equationRs=v/(—Elg—vRy). Its solution is given by a
_ N 2,: & U saddle-point manifold in a space ofx@ supermatrices
—f [dR]exp[ 4StrR +|20 NStRA +i 2StrRA , (1110,

2
Y _sta?- Zsuan
XD T aN 2
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E ] . E F,[Q] is too cumbersome to be done by hand. The calcula-
Rs=— 5, letimwT "AT=—-"lg—mvrQ. (14  tion can be managed most efficiently by employing the sym-
bolic manipulation package e@rAss[14]. The outputs of

Here » denotes the mean eigenvalue density given fothe epiGRASS (the highest order terms in anticommuting
the GOE by the Wigner semicircular lawy  Variables need to be further integrated over all the anticom-

— J4uZ—E?/(2mv?). After integrating out the massive Muting variables, and finally over all the commuting vari-
Gaussian fluctuations around the saddle-point manifold irRPles except “eigenvalueg10]. After those steps we change
Egs.(10) and (11), the first two moments of the transmitted to the\ variables of Ref[11], and arrive at the representa-

power are expressed as integrals over the supermatfices tion for T and T? in terms of a threefold integral. The details
=5 AT [11,10, of this procedure are outlined in Appendix A. Here we only

give the final expression

T _
()2 (FalQle :f dxlf d)xzf ANFL (M)
(mv)?2 )1 1 -1
E
:f [dQ]F[Q]Sdet M |8+i2_l)27A+i7TV7QA xexpl— (N Ao = N)Fu(N N1 A IT(N N1 Np),
_ 17)
i
X exp{ - ES’FVN StrQA] , (15 12 " " 1
:f d)\lf d)\zf d)\Fz()\,)\l,)\z)
= (mv)* 1 1 -1
<m>4:<FZ[QDQ‘ 19 X exp{— (A Ao = N HI(N N N (NN g N o),
18
This step completes derivation of the zero-dimensional non- (18
linear o model. wheree=2mvNe, and
D. Performing Q integration (AA ) 1-\?
ﬂ L 1 = 1
To evaluate the superintegrals in E¢$5) and (16), we F T (N4 A2 N2 2NN - 1)2

need to calculaté[ Q] and F,[ Q] first. At this point we

employ the Verbaarschot-Weidenmueller-Zirnbauer param-  Fy(A,A1,A2)=1—A2+(N2—1)\5+(A5—1)AZ,
etrization[10] for the matrixQ. Both F;[ Q] andF,[ Q] are

the functions of matrix elements @, obtained by the formal Fo(A N1, A2)=2(1—N2—N3—2AN A+ 3N2N5)2.
substitution ofQ for G~ in Egs.(8) and(9), as follows from

Eq. (14). Matrix elements ofQ are, in turn, the functions of The remaining factofl(\,\1,\5) contains all the informa-
eight commuting and eight anticommuting variables. Al-tion about the dissipation channels and comes from a calcu-
though we are interested in the highest order terms in antiation of the relevant superdetermindnf. Ref.[15] for the
commuting variabled13], the calculation ofF;[Q] and GUE case¢

V24 Y2+ 27vyN

E
Sdet M2 |g+i ;7A+i7ﬂ/yQA
v

\/(vz—i- 72)2+477V)/U2(vz+ yz))\l)\2+(27rvyvz)2()\%+ )\%-1)

(g+nM

(NG2+ 20NN+ N2+ N2— DM
=TI(N,Nq,N5p), (19

whereg=(v2+ y?)/(27vyv?), and we have also used (gi+\)
_ (g AN =[] —= —,
StrQA=—4i(AAp—\). (20 T (NOT 20N Ao A TN 1)

To generalize Eqg17) and(18) to the case of nonequipotent
dampers we just need to replabdé\,\1,\») with see, for example, Ref$10,16. It can be verified that Eq.

036206-4



VARIANCE OF TRANSMITTED POWER IN . .. PHYSICAL REVIEW E69, 036206 (2004

(17) yields the same result far as follows from adopting the T2 1 5 e 2€ 5
final formula of Ref.[10]. 2= 2(5+28e+7€%)— ——(5+2e+€)
(mv)" € €
E. Special case of uniform damping: Comparison with naive e ¢
calculation +—E1(€)(10+ 10e + 3%+ €d)
€
Next, we compare results of the presépersymmetric

calculation with the results of R€i9] for the case of uniform e _

dampingM =0,e+#0. In that special case the naive calcula- +—Ei1(e)(—10+10e—3e°+ €7), (29)
€

tion of Ref.[9] should be exact. In order to obtalnwe need

to evaluate the integral
where

) ) 1 )
|(X): fl dklfl dsz_ldhexr)[|x()\l)\2_h)} Joce_s
Ei(z)=| —ds.
7 S

XF1(7\'7\1a}\2)M(7\a)\1,)\2)1 (21)
where we have denotex=ie. The Fourier transformation This matches perfectly with the corresponding result of Ref.
with respect to the variable, [9].
T(t):f I (x)exp{—ixt}dx, ll. NUMERICAL RESULTS FOR THE MOMENTS

- OF THE TRANSMITTED POWER

has a meaning of averaged response power in the time do- The predictions Eqg17) and(18) of the supersymmetric
main for a system without dissipation. It can be written in acalculations can be compared with Monte Carlo evaluations
more convenient form of the first two moments of. Towards this goal we numeri-
cally generated an ensemble MK N real symmetric matri-
cesH typically choosing 1500 ensemble realizations and tak-
ing N=1000. The procedure is almost identical to that
described in Refl4]. The entries irH are constructed using

XFE1(N NN ) (N NN ). (220 a Gaussian random number generator such HigH,

) . i . =(LN) (65 + 6ii 6ji)- To simulate the case of the uniform
After performing\ integration, we make the change of vari- damping we usd'=¢l. To simulate the case of a finite

ables: U:)\17\2"Z:)\§ suggested in Refl11], and after & puymber of decay channels we take the diagofal
lengthy _but straightforward procedure arrive at a very simple— diag{y,7, ...,7.0,...,0 with M<N identical positive
expression entries. Then, for every ensemble realization we generate the
- off-diagonal elements of the resolvent matrix according to
I(t)=4mo(t). Gi;(E)=[El+il—H] !, modeling in this way the re-
sponse at a sitedue to excitation at the sife with E stand-
ing for the spectral parameter, and bothndj chosen to be
. larger thanM to avoid direct coupling to the damping chan-
I(x)= __2' nels. . . _
X Let us first consider the case of the uniform dampifg:
o ) ) ) =¢l. For a fixed matrix sizéN and fixed value of the spec-
This is equivalent to the first moment of the transmitted 5| variableE we explore a range of. ForE=0 the modal
power given by density dN/JE is given by v=1/7. Mean level widthy
— =2mv(JE,) in this case is identical te=2mvNe. In Fig. 1
T _ E 23) we compare both moments of powEas given by Eqs(23)
(wv)2 €' and (24) with the results of Monte Carlo simulations for
several values ot. It is evident that numerical results cor-
and indeed coincides with the value predicted by the naivéespond well with the theoretical curves.
calculation of Ref[9]. To repeat the same procedure for finite number of local
The same steps can be repeated when calculating the sglampersM we evaluated the three-dimensional integrals in
ond momentT2. One starts with Fourier-transforming the Eds. (17) and (18) numerically for a broad range of the
right-hand side of Eq(18), then changes to the variablas scaled mean level width [4]. The difficulties of the numeri-
andz, carries out the remaining double integration explicitly cal integration arising due to the singularity @\ ,\1,\5),
and finally applies the Fourier inversion. Intermediate calcu-are easy to overcome by employing the change of variables
lations are too long to be reproduced in the paper, but theuggested in Ref17]. The results are presented in Fig. 2 and
final result reads also show a good agreement with the theory.

~ * o 1
1 1 -1

which can be immediately Fourier inverted, yielding
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2.0 E(T)~J f AN dNLIT(7, A M) F (7N, N )
1 1

" ON N p— 7+ 1) O(T— N Ao+ 1) (1= (7+ N 1h5)?)
(N2 N2+ (TH NN ) 2= 2N A p( T+ NN p) —1)2

0.5
(25
1 2 4 6
€ where 7=t/(27vN) is a dimensionless timef(7,A1,\>)
=(N2= NS+ (NS— NG+ 1—(7+N1Np)2, and
40 IT(7, A, ) = (g+ 27+ N A )M (9% + 29N A+ A2+ A3
—1)"M2_ The generalization to the case of nonequipotent
A s channels is straightforvvard,l'[(r,)\l,)\2)=HiM(gi+27
T NN (974 2giA Ao+ N2+ N5— 1) Y2 The naive method
v yields a simpler expression for spectral energy density
L [9,18,19,
1 2 4 6
€ 207\ M2
E(T)naive=Eo| 1+ M ) , (26)
FIG. 1.(T) and(T?) are plotted on log scale as functions of the

parametere for the case of uniform damping. The solid lines rep-

resent theoretical predictiofEqgs.(17) and(18)]. For each numeri-  where the initial logarithmic decay rate is proportional to
cally obtained(T) and(T?)(represented by dot4500 samples of  the mean resonance width, given by a Porter-Thomas distri-
|G;;(E)|?, i#]j, were computed. & error bars were computed ption.
based on the observed variancesTaindT*. In Ref.[9] E(7) was measured experimentally, and fitted
into the naive resulf26) to extract values foM ando. The
two parameters were further used to predict the relative vari-
ance ofT (relative variance:(T?)/(T)2—1). Having the ex-
act resulf{Eq. (25)] we can now attempt to explain the 20—
o o 30 % overprediction of relative variance reported in Ref.
_ D|53|pat|qn wthln the frameworlf pf the present approachdeany, by specifying certain values foM, g, and e the
is parametrized in terms of quantitigs M, ande. At the  \yave scattering in an ergodic sample can be completely de-
same time those quantities are not readily accessible expe®cribed, since both spectral energy density and relative vari-
mentally, and in any case were not measured in the worlgnce are fixed uniquely. Further assuming fBét) as given
reported in Ref[9]. For this reason any direct comparison by Eq.(25) is the “measured” energy density of our system,
with those measurements is not feasible. Nevertheless, hye can repeat the procedure of Re&f]. Namely, we fit it to
choosing plausible values for the relevant parameters we céB(7) i, in Order to calculate relative variance according to
investigate the sign and magnitude of the discrepancies arishe two-parameter naive formula used in R&f] for com-
ing between the predictions for the relative variance of theparison with actual measurements. Such a fit allows us to
transmitted power calculated in the two theories under disextract values foM 5,6, Thaive, aNdEq that may or may
cussion. As a result of such comparison we found that th@ot correspond to the exact values. The true value of relative
discrepancy between the naive analysis and the présent Variance as determined from Eq$7) and(18) may then be
persymmetrig calculation is similar to one reported previ- compared to the corresponding naive prediction. _
ously in Ref.[9] between the naive theory and actual mea- BY @ numerical three-parameter fit over the same dynamic
surements. range(of a factor ofe'%) as in Ref.[9], we obtained values
The comparison is carried out by first considering thefo” Eos Tnaives @8N Mpgje. In spite of the naivete of the

mean spectral energy densityiean square response the model the fits were generally quite good, as observed in Ref.
time domain:E(t)=|G; (t)|?, where G;;(t) is the (band- [9], and we can substitute the obtained values into the for-
. ij d ij

mula for the relative variance from RdB],

IV. RELATIVE VARIANCE

limited) time-domain Green’s function. Similar quantities
were studied previously in the context of the delay time dis-
tributions in chaotic cavitief18]. Their statistics can be ob- _, 5
tained from the inverse Fourier transform of the two—point@_lz + 9_MM-2) 4[- ,(M=2)°, ]

— —4411to0 |
correlation functionT(Q)=G;;(E)G}; (E+Q) [10,17] with (T)? o (M-4)(M-6) ' M2
respect to{). The expression folf ({)) can be obtained by (27)
replacing 2 with Q in the derivation of Eq(17) (see also
Ref.[17]). Thus, where
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(b)

<T>

FIG. 2. Mean powelrmain figurg¢ and mean square powénse) for (a) M=4, (b) M=10, (c) M=40, (d) M=400. Solid lines
represent theoretical predictiofggs.(17) and (18)]. For each numerically obtaingd) and(T?) (dotg 1500 samples o|fG”-(E)|2 were
computed. We imposed the restrictionsj, andi>M,j>M for the nonuniform damping case, to avoid “recording” the response from
damped sites or from the “source” sifeand to correspond to the assumptions in the theoretical analysis. For the numerically obtained mean
power, 2@, 100, and 5 error bars were computed for the scaled mean level wjét0.1,1.0,10.0, respectively. They were based on the
observed variances df and T2. Error bars for the power variance are not shown, because they are smaller than the size of the dots. For
M =4 the theoretical prediction for the variance does not exist.

M M M measurements awaits an experiment in which the values of
|l:%exp{ ;] Emz(;), and theg; can be ascertained independently.
M3 M M (M
|2—$ex ;] EM(;)_ZEMl ;) +EM72
point correlation functions of the transmitted power spectrum
. o2 have been calculated both analytically and numerically for
Ek(Z)IJ —ds. ergodic dissipative structures. In the context of the wave
1 s scattering the former corresponds to the mean and the latter
to the mean square of the transmitted wave power
The basic steps leading to EQ7) are explained in Appen- ~ The ergodicity assumption is implicit by virtue of our
dix B. replacement of the actual differential operator describing
The results for several values of parameters are summavave motion by a large random symmetric matrix. Dissipa-
rized in Tables | and II. It appears that in the absence ofion is taken to act both locally in spa¢tocalized damp-
overall damping(Table ) the actual value of relative vari- ers” or dissipative channelsand uniformly within the
ance is very close to its naive estimate. However, when w&ample.
consider the case of a small number of strong dampers in a In accord with earlier resultst], the presence of nonuni-
system with a uniform backgroune#0 (Table lI), the dif-  form, or localized, sources of dissipation requires the use of

ference becomes similar to the discrepancy found in [Réf. an elaborate nonperturbative technique—the so-called zero-
A more definitive comparison of Eq$l7) and (18) with

M ) ] V. CONCLUSIONS

ra In the present paper the special cases of two and four

TABLE Il. Relative variance in presence of overall damping.

TABLE |. Relative variance in absence of overall damping.

M g € o Naive Exact
M 9 7 Naive Exact 1 1.0 1.0 1.302 7711 6.801
10 20.017 0.497 59.881 50492 1 2.0 1.0 1.205 7.908 6.809
20 20.017 0.989 14.419 14397 1 5.0 1.0 1.126 8.195 6.784
20 10.033 1.930 7,582 7574 4 10.0 1.0 1.330 7.194 6.134
14 2,018 4.066 4.990 4776 6 9.0 05 1.008 10.557 8.611

036206-7



ROZHKOV, FYODOROV, AND WEAVER PHYSICAL REVIEW E69, 036206 (2004

dimensional supersymmetric nonlinearmodel—to obtain this discrepancy has no influence on the remaining process,
the moments of the transmitted power. It is found that theas long as we use the integration measure of Rf]. Fi-
naive approach fails to correctly describe mean squareally, integrating over the angles as well as over the param-
power; the failure is ascribable at least in part to the assumpeters of SW2) we arrive at

tion of real Gaussian eigenmodes inherent in that approach.

The supersymmetry technique allows one to bypass the dif- _

ficulty of identifying eigenmode statistics, and to arrive at FilQl=—16(Zi+ 75— 27%), (A1)
expressions which are in agreement with Monte Carlo simu-

lations, and appear to be in better agreement with experimefvhere we indicated the integratidwhich does not affect

tally measured values of variance. other factors in the integrand in E(L5)] by tilde.
Upon the substitution of eigenvalues into E41) we can
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)\\1/,2: ,U«iz \V= ,U~21

APPENDIX A: EVALUATION OF THE SUPERINTEGRAL

In this appendix we elaborate on steps leading to the main AY =N (N2 —1)(\2—-1).
results of Sec. Il, expressed by E@$7) and (18). We start

by evaluatingF,[ Q] and F,[ Q] with EPICGRASS The pro- . . . . .
gram extracted terms of lowest and highest order in anticom-{iekdo)\milg o_f Iie)\;rliegr_?rt]lon 2?‘2 to, be .mOd'f'Td as well
muting variables, which are, generally, the only terms 1:02 =" : e Elelovs eigenvalues are

needed. The lowest order term was found to be unimportarﬁomeWhat more convenient for the calculations done at the

since the resulting integrands are not singular at the bounoe-nd of Sec. I, where we compared the exact and naive re-

ary [11,13. Then, we simplified the output GEPICGRASS sults for the first two moments_}zn gnlform damping case.
with MATHEMATICA and reduced the superintegral to a mul- '€ @nalogous procedure for yields
tiple integral over commuting and anticommuting variables

[10]. = _ 2 2., .2
The elements of matrixQ are introduced into thep- Fal Q] =4(4x"—4xx, =~ 4XXp+ X1 +X;
ICGRASSIN terms of the parametrization of Ré¢fL0]. Eight +2X1 X, + 82§+ 82%-1622)2 (A2)

commuting variables are: the eigenvalyes u,,u, the pa-
rameters of S(2) groupm,r,s, and two anglesp; and ¢,. _ 2 _ ) )
The integration region in Eq¢15) and (16) corresponds to Wherexy,=1+2uj,, x=1-2u% and after passing to Efe-
oo g g MiF,5<0, 0<u<l, 0<g¢,,e,<2m [20]. tOV'S variables in Eqs(Al) and (A2) we obtain the final
Then, afterEPIcGRASSextracts the highest order term in an- résults of Sec. Il—Eqs(17) and(18).
ticommuting variables, we have, for example, foff Q],

APPENDIX B: DETAILS OF THE NAIVE CALCULATION

F,[Q]= —3222—322,2,C0S¢;COS®,SiN ¢1SiN @, The method of Ref[9] leading to Eq.(27) is presented
) ) ) s here for completeness. Mean square power is given by a
—27(36 cosp1CoSe;+ 12 cospisings modal expansiofmean power requires a similar though sim-

: . . ler calculation,
+ 12 cosp3sin ¢?+ 4 sing3sin ¢3) P »
I r*

M ym

— 72(36 sing3sin 3+ 12 cosp?sin ¢3 P S ujuj u™ uf
+12 cosp2sin @2+ 4 COSp2coSe3), rinik E-BE =16 E=Entidn
ul* ul ulx gk
wherez; ,= puy oV1+ui, andz=iuy1-pu” [21,22. X =" S (B1)
Eight anticommuting variables are readily integrated out E-E—i& E-Betidy

according to the conventiofdy y=1/(27) Y. Note that this
convention is different from the one we took in the beginningWe make assumptions about a lack of correlations amongst
of Sec. Il in the derivation of generating function. However, modal amplitudes and frequencies and widths, and conclude
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(U2 (u2)*
T2
> E (E E_lgr) (E E+|§r)2+r¢| (E_Er_igr)z(E_Er_Figl)z
(u?)*
T2 E—EI)E-E+1L)E-E 1) E-E+iL)" B2)

The summations over the modes are replaced with integrat®ns Nv[dE,), and eigenfrequency correlations are taken to
be those of GOE, by introducing the Dyson two level function[12]. We have

Nv(ut)? dx
T?) =
(™ (mv)? f—“ (X=1Z)(x+i¢p)?

2/,12\4 w aNv
+2(Nv) <U>J f [1-Y,(7mNvz)]dxdz

(mv)* —=(XP+ ) (x=2) %+ {f]

(Nv 2<u2>4f Joc [1—Y,(wNvz)]dxdz

(mv)? —o(X—i4,)%(x—

wherex=E—E,, z=E,—E,

a distribution of widths, given bj12]

g g M/2-1
{456 e

wherel is average resonance width aki¢ls) is the Gamma
function,

(M/Z)M/Z
T(M/2)

&

ME , (B4

. The remaining steps of the
naive ensemble averaging procedure include integration over

z+ig)? (B3)

(T =Nw(u2 =1 2(Nw) (U,
r
I_§r+§|f°° (1_Y2(7TNVZ))dZ
208 )= 2+(5+0)?
The average ovet, and ¢, is indicated by overbar. After
substituting(u?)=1/N, (u*)/(u?)2=3 (as for Gaussian ran-

dom numbersand integrating with respect to eigenwidtls,
integration becomes straightforward and results in (2).
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